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INTRODUCTION

This essay is about four theorems:

1. Gödel’s Completeness Theorem

2. Gödel’s First Incompleteness Theorem

3. Gödel’s Second Incompleteness Theorem

4. Tarski’s Theorem on the Undefinability of Truth.

I chose to write about these theorems because I
realised I didn’t really understand them. For instance,
before researching this piece, I might have claimed:

”Gödel’s Incompleteness theorem says there are true
statements which cannot be proven”

This statement is not true1. The primary goal of
this essay then is to clear away possible misconceptions
regarding these theorems and to understand what they
actually say.

The style of this essay reflects this goal. For ex-
ample, I have chosen my own convention of referring
to Completeness in Gödel’s Completeness Theorem as
”Kompleteness”2 so as to distinguish it from Com-
pleteness in Gödel’s Incompleteness theorems; I have
included references to online discussions and blog-posts
clarifying misconceptions; I have included Part I, which
is a summary of First Order Logic; and I have included
only a few proofs3, focusing more on understanding the
statements themselves. Finally, this work represents a
current state of understanding. As a result, I would love
if people would provide comments and corrections at
david-kenworthy.gunn@uibk.ac.at.

With that said, this essay is organised as follows:

In Part I, I want to give an introduction, summary and
overview of First Order Logic. This is the language and
logic in which the four theorems above are formalised.
The content of Part I is predominantly based on Ref.[1]
and Ref.[2]. Unfortunately, in trying to be concise yet

1 At least without clarifications
2 As reflected in the title
3 In fact sketches of proofs

complete, it ended up being a bit ”lecture-notes-ey”. I
included it in this essay because I knew very little about
First Order Logic before researching this piece - and
so figured others might also not know much about it -
and because it is important for understanding the four
theorems.

In Part II, I will then discuss Gödel’s Komplete-
ness and First Incompleteness Theorem. In Part
III, I will discuss Gödel’s Incompleteness Theorem in
the context of Tarski’s Truth Schema and Theorem
on the Undefinability of Truth. In Part IV, I will
briefly discuss Gödel’s Second Incompleteness Theorem,
and then in Part V will present some concluding remarks.

PART I: AN ATTEMPT AT AN INTRODUCTION
AND OVERVIEW OF FIRST ORDER LOGIC

I.a. An overview of Formal Systems

The four theorems that are the subject of this essay
are ultimately about what can and can’t be proven. To
understand them, we need to understand Formal Sys-
tems. A formal system is an abstract structure in which
theorems can be proven. It consists of four components:

1. An ”Alphabet” consisting of a finite set4 of sym-
bols (aka ”letters”).

2. A Grammar consisting of a set of rules about how
symbols from the alphabet can be concatenated to
form strings, referred to as a ”formulae”5. Formu-
lae that can be generated by the grammar are called
”Well Formed Formulae”.

3. A finite set of Inference Rules which may be used
to infer formulae from finite sets of other formulae.

4. A finite set of Axioms or Axiom schemata, con-
sisting of well-formed formulae that are taken to be

4 Given Logic is meant to be the foundation of Set Theory, if you
are concerned, as I was, about the use of the word ”set” so early
on, please hold off your skepticism and just go with it until Sec-
tion I.e. Meta-languages; though its worth noting that here we
consider only finite sets, so naive notions of set theory tend to
be consistent (e.g. no Russel’s Paradox)

5 Also referred to as ”words”
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true and are used as a starting point from which
theorems of the formal system are derived.

(1) and (2) are typically referred to together as
the Syntax of a Formal Language6. (3) and (4)
together are referred to as the Proof System. The four
components above correspond to a means by which we
can formulate, manipulate and thereby prove theorems.

However, as described above, formal systems are only
a means for manipulating symbols. The well formed
formulae of formal systems also typically have meaning
or Semantics. As we will see, the distinction between
proof systems and semantics is important. Very roughly
speaking proof systems are about what can be ”proven”7

whereas semantics is about what is ”true”8 .

In the rest of Part I, we will discuss the formal
system called First Order Logic9. We will begin
with the syntax of a first order language, followed
by the semantics and then the proof system. We
will then finish Part I by introducing some important
First Order Theories. These are formal systems
which build on first order logic by adding further axioms.

So without further ado, lets introduce First Order
Logic.

I.b. The Syntax of First Order Languages

The alphabet of First Order Logic consists of Vari-
ables, Functions, Predicates10, Logical Connec-
tives and Universal quantifiers. These are the sym-
bols that we use to build sentences of the language. We
take x1, x2, .... as symbols for variables11, f1, f2, ... as
symbols for functions and P1, P2, .... as symbols for pred-
icates. For the Logical connectives, we use the symbols

6 Given an alphabet Σ, let Σ∗ be the set of all finite strings of sym-
bols from Σ. Then any subset of Σ∗ is a Formal Language.
Thus the set of well formed formulae in a formal system corre-
spond to a formal language over Σ. Note the concept of a formal
language doesn’t strictly need a grammar. The grammar of a for-
mal language can itself be formalised into a Formal Grammar .
Different formal grammars are categorised Chomsky’s Hierar-
chy [3]. For the formal languages we look at in this essay, the
corresponding grammar is categorised as ”Context Sensitive” [4].

7 Whatever that might mean
8 Whatever that might mean
9 To those already aware of Propositional Logic, First Order Logic
can be seen as an extension of Propositional Logic. As we’ll see
later, there is also Second Order Logic, which similarly can be
seen as an extension of First order Logic. Which Logic is ”the
most fundamental” is subject to debate, as we’ll see later

10 Also sometimes called Relation Symbols
11 Although a Formal system has finitely many symbols, we assume

we have as many variables as we need

¬, ∧, ∨, ⇒, ⇔ , ) , ( (1)

We use the symbols ∃ and ∀ for the universal quantifiers.
Both functions and predicates have a finite (possibly
zero) number of inputs. We will discuss what all these
symbols mean in the next section, but first we look at
how they can be combined to make formulae.

A First Order Language consists of Well Formed
Formulae , which are defined as follows. Firstly, we
must define what a Term is. Terms are represented with
t, u, v... and a defined recursively as follows:

1. a variable is a term

2. a constant symbol (a function with 0 inputs,
which we denote with c1, ..., cn) is a term

3. if t1, ..., tn are terms and f is an n-input function,
then f(t1, ..., tn) is a term

Then, well formed formulae, which we represent with
A,B,C..., are defined recursively as

1. if t1, ..., tn are terms and P is an n-input predicate,
then P (t1, ..., tn) is a (atomic) well formed formula.

2. If A is a well formed formula, then ¬A is a well
formed formula.

3. If A and B are well formed formulae, then (A ∧
B), (A ∨ B), (A ⇒ B), (A ⇔ B) are well formed
formulae

4. If x is a variable and A is a well formed formula,
then (∀xA) and (∃xA) are well formed formulae

And that’s it. Any string that can be composed from
these rules, and only strings that can be composed from
these rules are well formed formulae. To avoid writing
”well formed formulae” each time, we will simply refer to
these as formulae from now on.

Example 1. The following are formulae:

1. P ; P (x); P (x1, x2, ...xn), P (f1(x1), f2(x2))

2. ¬P (x); (P1(x) ∧ P2(x)); (¬P1(x1) ∨ (P2(x2) ⇒
P1(x2)))

3. (∀xP ); (∀x1P (x1)); (∃x1P (x2)); ((∃x1P (x1)) ∧
P (x2))

The following are not

1. x; ∀x x (a term is not a formula)

2. P (P (x)) (Predicates take terms as inputs, not for-
mulae)

3. ∀P P (x) (you cannot quantify over predicates)
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So far, all we have are strings of symbols. We should
give these strings some meaning. However, before we do,
we have the following definition.

Definition 2. The occurrences of a variable in a formula
are defined as follows

1. An occurrence of a variable, x, in a formula is
bound if it occurs within a sub-formula of the form
∀xA or ∃xA

2. An occurrence of a variable, x, in a formula is free
if it is not bound.

3. A term/formula is open if it has free variables.
Otherwise it is closed.

Example 3. We have

1. In ∀x,∃yP (x, y, z), x and y are only bound. z is
only free

2. In (∀xP (x)) ∧ Q(x), the first occurrence of x is
bound whilst the second is free. This situation can
be avoided by renaming bound occurrences of vari-
ables, e.g. rewriting the formula as (∀yP (y))∧Q(x)

Note, open Formulae can be used to define new predi-
cates, e.g:

3. P (y) ↔df ∃xQ(x, y)

where ↔df means the left hand side is a short hand for
the right-hand side.12

I.c. The Semantics of First Order Languages

Ok, so having established the rules for what strings
are allowed in our first order language - i.e. the syntax of
our language - we now turn to what they actually mean
- i.e. the Semantics of first order languages. The idea
behind predicates is roughly that they they ’express a
full sentence’. So, for example 1-input predicates, P (x),
refer to ”being something”, e.g. ”x is a number” or ”x
is tall”. A 2-input predicate, P (x1, x2) correspond to
binary relations, like ”x1 is greater than x2” or ”x1 kicks
x2”. 3-Input predicates correspond to tertiary relations
and so on13. So, we begin by specifying the semantics of
P

12 See discussion of Meta-language at end of Part I
13 0-input predicates are sentences without any internal structure.

As we’ll see later they can be evaluated as either True or False.
First Order Logic with only 0-input predicates corresponds to
Propositional Logic

Definition 4. Let L = {x1, .., .xn1
; c1, ..., cn2

; f1, ..., fn3
;

P1, ..., Pn3 ;¬,∧,∨,⇒,⇔;∀,∃} be a first order language
An Interpretation of L is a pair, (D, I), consisting of a
non-empty14, not necessarily finite set15 of elements, D,
referred to as the Domain, and a function I which maps
the functions and predicates of the language to individuals
in the domain or functions as follows:

1. if c is a constant, then I[c] is an element of the
domain

2. if f is an n-input function, then I[f ] is a function16

that maps an n-tuple of elements in the domain to
one element in the domain

3. if P is an n-input Predicate, then I[P ] is a function
that maps an n-tuple of elements in the domain to
True or False.

In the wise words of Bill [5], “Things done without
example, in their issue are to be fear’d”. So lets create
an example which we’ll use throughout this semantics
section.

Example 5. Let L = {x1, x2, x3, c, f, P,¬,∧,∨,⇒,⇔
,∀,∃}. The following is an interpretation:

• D = {”London”, ”Paris”, ”New Y ork},

• I[c] = ”London”

• I[f ] : D → D defined by

”London” 7→ ”Paris”

”Paris” 7→ ”London”

”New Y ork” 7→ ”London”

(”the nearest city to x”)

• I[P ] : D → {True, False} defined by

”London” 7→ True

”Paris” 7→ True

”New Y ork” 7→ False

(”x is a capital city)

Note that the interpretation does not yet assign mean-
ing to the variables. We do this next:

Definition 6. A Variable Assignment17, V , of L in
an interpretation I = (D, I), is a function from the vari-
ables of L to the domain, D. We write Vx 7→a for a vari-
able assignment which maps x to a and maps all other
variables as V does.

14 In First order logic, the domain must be non-empty
15 Again you may object to the use of set so early on. Please again

wait for the discussion of Meta-languages in Section I.e.
16 Likewise if you have an objection to the use of the word function,

again please wait until Section I.e.
17 Also referred to as Valuation
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Example 6. cont. Continuing with the example let V :
{x1, x2, x3} → D, be the variable assignment

x1 7→ ”Paris”

x2 7→ ”New Y ork”

x3 7→ ”New Y ork” (2)

Correspondingly, Vx2 7→”London” : {x1, x2, x3} → D would
be the variable assignment

x1 7→ ”Paris”

x2 7→ ”London”

x3 7→ ”New Y ork” (3)

We are now in position to assign meaning in First order
Logic. We begin by assigning meaning to the terms:

Definition 8. Let I = (D, I) be an interpretation of
L and V a variable assignment. Then the meaning of
a term, t, in I given V, represented by IV [t], is defined
recursively as follows:

1. if t is a variable, then IV [t] = V [t]

2. If t is a constant, then IV [t] = I[t]

3. If t = f(t1, ..., tn),
then IV [t] = I[f ][IV (t1), ...IV (tn)]

Example 6. cont. with V as above, we have
IV [f(x1)] = I[f ][IV (x1)] = I[f ][”Paris”] = ”London”

Now we assign meaning to the formulae:

Definition 9. Let L be a language. Given an interpreta-
tion I = (D, I) and a variable assignment V, the mean-
ing of a formula A in I given V is defined recursively as
follows:

1. P (t1, ....tn) is true in I given V if
I[P ][IV [t1], ..., IV [tn]] = True. It is false in I
given V if I[P ][IV [t1], ..., IV [tn]] = False.

2. Given two formulae, A and B, the meaning of log-
ical combinations of A and B in I given V can be
calculated via the following Truth table18.

A B ¬A (A ∧B) (A ∨B) (A ⇒ B) (A ⇔ B)

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

18 From the truth Table it is clear that we could have therefore
written A ∨ B ↔df ¬(¬A ∧ ¬B), A ⇒ B ↔df ¬(A ∧ ¬B),
A ⇔ B ↔df ((A ⇒ B) ∧ (B ⇒ A))

3. Given a formula A, ∀xA is true in I given V if
IVx 7→a [A] = True for all a in the domain19.

4. Given a formula A, ∃xA is true in I given V if there
is an element a in the domain such that IVx7→a

[A] =
True.20

We write ”A is true in I given V” as |=I,V A

Example 6. cont. We have:

• |=I,V P (x1), ̸|=I,V P (x3), |=I,V P (x1) ⇒ ¬P (x3)

• |=I,V ∀x1P (c), ̸|=I,V ∀x1P (x1)

• |=I,V ∃x3P (f(x1)) ∧ P (x3), ̸|=I,V ∃x1P (f(x1)) ∧
P (x3)

Note that in First Order Logic, the meaning of a
formula in an interpretation given a variable assignment
is ”True” or ”False” and only ”True” or ”False”.

Finally we have:

Definition 10. Let A have no free variables. Then

1. A is True in I if |=I,V A for all variable assignment
V in I. We write ”A is True in I” as |=I A.

2. If |=I A, we say that I satisfies A. Moreover, if
there is an interpretation that satisfies A, we say A
is satisfiable21.

3. A model of a set of formulae, S, is an interpreta-
tion that satisfies every formula in S.

4. A is true given a set of formulae S are true, if every
model of S satisfies A. That is, if for all I such that
|=I S, |=I A. We write ”A is true given a set of
formulae S are true” as S |= A.

5. A is a tautology22 if |=I A for all interpretations,
I. We write ”A is a Tautology” by |= A23.

Example 6. cont. Finishing our example.

1. |=I P (c), ̸|=I P (x1)

2. P (x1) is satisfiable. P (x1) ∧ ¬P (x1) is not satisfi-
able

19 Now you might notice this definition is almost circular; that ∀ has
also slipped into our discussion. Again, please hold off skepticism
till the Meta-languages section and appreciate that the defintion
is none the less unambiguous.

20 It is clear that therefore we may write ∃xA ↔df ¬(∀x¬A)
21 This is exactly the same meaning as in 3-SAT
22 Alternatively a set of formulae are ”Valid”
23 We might note that A |= B if and only if |= A ⇒ B. For this

reason, Introductions to Logic may concern themselves only with
the Tautologies of a Formal System
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3. The intepretation of our example is a model for
{P (c)}

4. P (x) |= P (f(x))

5. ¬(P (x1) ∧ ¬P (x1)) is a Tautology.24

I.e. A Proof System for First Order Logic

Oof, that was a lot. But we now have a first order
language equipped with semantics. To elevate it to
First Order Logic we need one more component. We
have defined what is true; however, we need a set of
rules which allows us to deduce what is true - a set of
Rules of Inference.

Definition 11. Given a set of Rules of Inference, R, we
write ”Given the set of formulae S, we may deduce via R
A” as S ⊢ A.

So lets start building a set of rules of inference for First
Order Logic. Throughout, we will use S, S1, S2 to refer
to sets of Formulae and A,B,C, ... to refer to individual
formulae. We begin with the painfully obvious: given A,
we should be able to deduce A. We write this in generality
as

(a) If A is an element of S, then S ⊢ A

where (a) is the name we will use to refer to the rule
(standing for Assumption).

The next most painfully obvious rule comes from com-
bining formulae. Namely if we have A and B then we
should be able to deduce A∧B (”A and B”). Conversely,
if we have A ∧ B, then we should be able to deduce A
and to deduce B. Written in generality this yields:

(∧i) If S1 ⊢ A and S2 ⊢ B, then S1 ∪ S2 ⊢ A ∧B.

(∧e) If S ⊢ A ∧B then S ⊢ A and S ⊢ B.

Here, the ”i” in (∧i) stands for introduction and
likewise the ”e” (∧e) stands for elimination.

Coming fourth place for painfully obvious, we have
that from ¬¬A (”not not A”), we should should be able
to deduce A25. Writing this in generality we have

(¬¬e) If S ⊢ ¬¬A then S ⊢ A

24 It is the Law of non-contradiction
25 Well I say painfully obvious. In fact there is a school of Logic

called Intuitionisitic Logic[6] which does not allow this rule of
inference. As an implication, it rejects mathematical proofs of
the form ”Assume the Theorem isn’t True....”

Like ∧, ¬ is also equipped with an introduction rule

(¬i) If S1 ∪ {A} ⊢ B and S2 ∪ {A} ⊢ ¬B then S1 ∪S2 ⊢
¬A

This is a good point to stop and see how these rules of
inference can be combined.

Example 12. {A} ⊢ ¬¬A (the reverse of (¬¬e)

Proof. We have:

• From (a): (1) {A,¬A} ⊢ A

• From (¬i) with {(1)}: (2) {A} ⊢ ¬¬A

Example 13. {A,¬A} ⊢ B for all B (this is known
as the ”Principle of Explosion” - from a contradiction,
everything follows)

Proof. Let B be any Formula.

• From (a): (1) {A,¬A,B} ⊢ A

• From (a): (2) {A,¬A,B} ⊢ ¬A

• From (¬i) with {(1), (2)}: (3) {A,¬A} ⊢ ¬¬B

• From(¬¬e) with {(3)}: (4) {A,¬A} ⊢ B

These examples demonstrate how these rules of
inference can be used to syntactically deduce formulae
from other formulae. This is an important distinction.
The proofs in Example 12 and 13 make no appeal to
meaning at all. They simply manipulate the strings by
the allowed rules. We will have more to say about the
connection between ⊢ and |= in Part II.

For completeness, the following set of rules of inference,
in addition to (a), (∧i), (∧e), (¬i), (¬¬e), constitute a
proof system of First Order Logic [2]. Note, in the fol-
lowing Ax 7→t corresponds to A where any free occurrence
of x is substituted with t:

(∨i) If S ⊢ A then S ⊢ A ∨B and S ⊢ B ∨A for any B

(∨e) If S1 ⊢ (A ⊢ B), S2 ∪ {A} ⊢ C and S3 ∪ B ⊢ C,
then S1 ∪ S2 ∪ S3 ⊢ C

(⇒ i) If S ∪ {A} ⊢ B then S ⊢ (A ⇒ B)

(⇒ e) If S1 ⊢ (A ⇒ B) and S2 ⊢ A, then S1 ∪ S2 ⊢ B

(∀i) For any closed term, t, that does not occur in Γ or
A, if Γ ⊢ Ax7→t, then Γ ⊢ ∀xA

(∀e) If Γ ⊢ ∀xA then Γ ⊢ Ax7→t for any closed term t,

(∃i) For any closed term, t, Γ ⊢ Ax 7→t then Γ ⊢ ∃xA
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(∃e) For any closed term, t, that does not occur in A,B
or Γ2, if Γ1 ⊢ ∃xA and Γ2 ∪ {Ax 7→t} ⊢ B, then
Γ1 ∪ Γ2 ⊢ B

I say a proof system because it is not unique. For
instance, we have chosen to codify our proof system in
only rules of inference. We could have also used axioms
instead26.

We will now conclude Part I by discussing briefly first
order theories and the Meta-language of First Order
Logic

I.d. First Order Theories

In this essay, we will uses the term First Order The-
ory (symbolized by the pair (L, T )) to apply to a formal
system consisting of a first order language, L, equipped
with the rules of inference from First Order Logic and a
set of additional Axioms, T . By this definition, First
Order Logic is also a first order theory (with an empty
set of additional axioms). Another such example of first
order theory, which we will have a lot more to say about,
is Peano Arithmetic

Example 14. Peano Arithmetic (PA) The first order
theory of Peano Arithmetic is defined as follows

• LPA = {x, y, ....z; 0;S,+,×; =; ,¬,∧,∨,⇒,⇔
;∀,∃}, with syntax of a first order language, and
where 0 is a constant, S, + and × are 2-input func-
tions and = is a 2-input predicate

• The rules of inference are those of first order logic

• In addition we have following Axioms, TPA:

1. for all variables x, x = x

2. for all variables x,y (x = y ⇒ f(t1, ..., x, ...tn)
= f(t1, ..., y, ...tn))) for any n-input function

3. for all variables x,y (x = y ⇒ (A ⇒ Ax 7→y)

4. ∀x(0 ̸= S(x))

5. ∀x, y(S(x) = S(y) ⇒ x = y)

6. ∀x(x+ 0 = x)

7. ∀x, y(x+ S(y) = S(x+ y))

8. ∀x(x× 0 = 0)

9. ∀x, y(x× S(y) = x× y + x)

10. ∀y⃗
(
(A(0, y⃗) ∧ ∀x(A(x, y⃗) ⇒ A(S(x), y⃗))) ⇒

∀xA(x, y⃗)
)

for any formula A with
occurring variables x, y1, ..., yk. ⇒
A(S(x), y1, ...yk))) ⇒ ∀xA(x, , y1, ..., yk)
for any formula A with occurring variables
x, y1, ..., yk.

26 See Discussion in Ref [7]

(1-3) are equality axioms, (4-5) successor function
axioms, (6-9) addition and multiplication axioms
and (10) is an Axiomatic Schema, corresponding
to a recursively enumerable27 set of axioms.

Thus we see Peano Arithmetic is a formal system
which extends First Order Logic with additional axioms.
In was constructed such that it has arithmetic on the
Natural Numbers (i.e. N = {1, 2, 3, ...} with 1 + 1 = 2,
1× 2 = 2 etc) as a model (i.e. |=(N,+×) PA).

In this essay, we will use the word Theorem to refer
to a formula in a first order theory that can be derived
from the Axioms. That is if T are the set of additional
axioms, A is a theorem if T ⊢ A.

Example 15. The Theorems of First Order Logic are
Tautologies.

Proof. See Gödel Kompleteness Theorem in Part II.

Example 16. Let 1 ↔df S(0) and 2 ↔df S(1)28. Then
1 + 1 = 2 is a Theorem of Peano Arithmetic:

Proof. Proof: 1 + 1 = S(0) + S(0) = S(S(0) + 0) =
S(S(0)) = S(1) = 2

I.e. The Meta-language of First Order Logic

Finally, we should note that the symbols ⊢, |= and
↔df do not belong to the formal language of First Order
Logic. They are not symbols in the alphabet. Rather,
they belong to the Meta-language [1] - that is they
belong to the language used to describe the formal
system (in these notes, predominantly standard English,
augmented by symbols such as ⊢, |= and ↔df ).

Generally, a Meta-language is used to describe an Ob-
ject Language . Indeed, in order to define the semantics
of the Object Language, we must use a Meta-language
[9, 10]. The Meta-language can be chosen independently
of the Object Language (we could for instance have writ-
ten these notes in French). However, the Meta-language
should have the following properties [11]

1. The Meta-language should contain a copy of the
Object Language, L (it must be able to ’say’ any-
thing L can say)

2. The Meta-language should be able to talk about
the Formulae of L (it must be able to refer to them
with a ’name’), as well as the syntax of strings of
symbols from the Alphabet.

27 It can be shown PA is not finitely axiomatizable [8]
28 Alternatively, add 1, 2 to the constants of the language and add

the axioms S(0) = 1, S(1) = 2
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Property (1) is the reason why words like ’set’ appear in
this text. Typically, the Meta-language used to describe
a first order theories contains some set theory [9]29.
Its also why the semantic definitions of ∀ and ∃ seem
almost circular. We will have more to say about this
when we discuss Meta-language in more detail in Part III.

PART II: GÖDEL’S KOMPLETENESS AND
FIRST INCOMPLETENESS THEOREM

Aaaaand Breath. Ok, having done all that work, we
are now in a position to efficiently state and understand
Gödel’s Completeness Theorem and Gödel’s First In-
completeness Theorem. This is precisely the goal of Part
II.

Before that, however, I would like to say that I find
the naming of these theorems very unfortunate. The
Completeness in Gödel’s Completeness theorem is not
the same as Completeness in Gödel’s Incompleteness
Theorems. Therefore, I introduce here my own con-
vention of referring to the former as Komplete and the
latter as Complete.

We now begin with two definitions relating the
concepts of ⊢ and |=.

Definition 17. Soundness and Kompleteness30

1. A Formal System is Sound if S ⊢ A implies S |= A
for any set of Formulae S and Formula A

2. A Formal System is Komplete31 if S |= A implies
S ⊢ A for any set of Formulae S and Formula A

Soundness and Kompleteness are a property of ⊢, i.e.
our rules of inference. Obviously, they are very desir-
able properties to have. They ensure anything we can
derive is true in all models, and anything always true
is derivable. Note that constructing a sound proof sys-
tem is easy. For example, the proof system consisting of
only the rule of inference (a) is obviously sound. How-
ever, such a proof system is also trivial. The challenge
is to construct a sound proof system complicated enough
that it is Komplete. To this end we have the following
remarkable theorems:

Theorem 18. First Order Logic is Sound.

29 Or its extensions. See also Ref.[12] for further discussion
30 Using my convention to avoid confusion with Completeness later

on - typically called ”Completeness”
31 Again, using my convention - typically this is called ”Complete”

Theorem 19. Gödel’s Kompleteness Theo-
rem32[13]: First Order Logic is Komplete

Thus, in first order theories, we have S ⊢ A if and
only if S |= A. Colloquially, we can express this as ”In
first order theories, something is provable if and only if
it is always true”33.

Next, we move onto Gödel’s First Incompleteness The-
orem. First we need another two definitions

Definition 20. Consistency and Completeness

1. A first order theory, (L, T ) is Consistent if there
is no formula A in L, such that T ⊢ A and T ⊢ ¬A.
That is the Axioms do not lead to a contradiction

2. A first order theory, (L, T ), is Complete if, for all
formula A in L, either T ⊢ A or T ⊢ ¬A

As we saw earlier in Example 13, if a theory is not
consistent, then any proposition is derivable. Thus con-
sistency is certainly something to be desired34. However,
First Order Theories are generally not complete.35.

We can now state Gödel’s First Incompleteness Theo-
rem36.

Theorem 21. Gödel’s First Incompleteness Theo-
rem [14, 15]: Let (L, T ) a first order theory containing
Peano Arithmetic37 be consistent. Then (L, T ) is incom-
plete.

Colloquially, ”In any complicated enough, consistent
theory, there will be a statement which can neither
be proved nor disproved”. This statement ”which can
neither be proved nor disproved” is often referred to as
the theories’ Gödel Statement. Note, from now on, we
will say ”1OT extending PA”38 as shorthand for ”first
order theory containing axioms of Peano Arithmetic”.

Gödel’s Kompleteness Theorem and First Incomplete-
ness Theorem can seem contradictory39. This appear-
ance of a incongruity can be cleared up considering the
semantics more carefully. Recall a model of a a set of

32 Again, using my convention. Typically this is called ”Gödel’s
Completeness Theorem”

33 Compare this to the statement about Gödel incompleteness the-
orem in the introduction.

34 See also concluding remarks
35 In fact, First Order Logic is only complete if the allowed predi-

cates are strongly restricted
36 As presented [14]
37 Note, in fact we do not need all 10 axioms. The 10th axiom can

be replaced by ∀y(y = 0 ∨ ∃x(S(x) = y). This axiomatization of
arithmetic is referred to as Robinson Q

38 Similarly PA could be changed to Q throughout these notes
39 Not least because of their usual names
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formulae, S, is an interpretation, I, that satisfies every
formula in S , i.e. |=I A for all A in S. Then we have the
following semantic conditions for consistency:

Theorem 22. Semantic Definition of Consistency
A theory is consistent if and only if it has a model 40

This result is not at all obvious41 and I find it to be
quite a beautiful result. Colloquially, it states that at
first order theory cannot reach a contradiction if and
only if we can find a concrete example of it.

We may now re-state Gödel’s Kompleteness and First
Incompleteness Theorem in terms of consistency and se-
mantics

Theorem 23. Gödel’s First Incompleteness Theo-
rem [Semantic version] Let (L, T ) be a 1OT extend-
ing PA. Then there is a formula in L, A, such that

1. there exists a model of T, M1 (i.e |=M1
T ) such

that |=M1
A

2. there exists a model of T, M2 (i.e |=M2
T ) such

that |=M2
¬A

Proof. By Gödel’s Kompleteness Theorem, it follows
from Gödel’s Incompleteness Theorem that neither T |=
A nor T |= ¬A. This can happen two ways: either T has
no model, or there is a model of T that satisfies A and
model which doesn’t. But, by the semantic definition of
consistency, (L, T ) has at least one model. Hence the
result.

In fact Gödel’s First Incompleteness as originally
published in 1931 showed that the model M1 can be
taken to be the arithmetic on the Natural Numbers,
(N,+,×). That is to say Gödel’s First Incompleteness
theorem tells us that there are truths about arithmetic
on the Natural Numbers which cannot be proven from
Peano Arithmetic or its extensions42, i.e. there is a G
such that PA |=(N,+,×) G but PA ̸⊢ G

As a corollary, we have

Corollary 24. There are non-standard models of Peano
Arithmetic (i.e. models other than (N,+,×))

This gives us a new way of looking at Gödel’s First
Incompleteness Theorem. What it tells us is that in

40 For this reason, some Logicians use ”satisfiable” as a synonym
for consistent. That T is consistent implies it has a model is
called the ”Model Existence Theorem”

41 In fact Thm 19 is a corollary of the forward direction of this
claim [2, 15]

42 This is the accurate modified form of the statement from the
introduction

any first order theory that contains Peano Arithmetic,
the axioms will never be strong enough to pin down a
unique model of the theory.43

As an example, consider adding the Gödel statement
to the axioms of Peano Arithmetic. This defines a new
first order theory. This new theory is still consistent - it
still has at least one model; indeed the Gödel statement
is true in (N,+,×). However, this new theory also still
satisfies the conditions for Gödel’s First Incompleteness
Theorem. Thus this new theory has its own Gödel
statement and so on and so on44.

Hopefully, it is now clear what Gödel’s Kompleteness
and First Incompleteness Theorem say. In the next
two parts, we will first investigate the proof of Gödel’s
First Incompleteness Theorem and its connection to ”The
Liar”, and then answer some remaining questions about
it.

PART III: GÖDEL’S FIRST INCOMPLETENESS
THEOREM IN THE CONTEXT OF TARSKI’S

TRUTH SCHEMA

In this Part, we give a sketch of the proof of Gödel’s
First Incompleteness Theorem from Tarski’s Theorem on
the Undefinability of Truth. To begin, we have to return
to a more detailed discussion of Meta-languages.

III.a. Meta-languages and Tarski’s Truth Schema

Recall a Meta-language, M , is the language used to
discuss the Object Language, L and should have the fol-
lowing properties:

1. It should contain a copy of the Object Language,
L - it should be able to ”say” everything L can say

2. It should be able to talk about the formulae of L -
it should be able give a ”name” to any formula in
L - as well as discuss syntax

Here we are making the distinction between the name
of a sentence and the sentence itself. We make this dis-
tinction as we want to talk about the truth of a sentence.
Talking about truth in general is difficult [18]. However,
Tarski proposed the following criterion for the truthful-
ness of sentences themselves:

A sentence is true if and only if its content is true.

43 See Ref. [16] for an excellent discussion.
44 This is discussed nicely in Ref. [17]
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So for example

”1+1=2” is true if and only 1+1=2 (4)

This criterion seems painfully trivial, but lets break
it down to see its content. First we remember the
Meta-language must be able to express everything L can
say. Hence the proposition 1+1 = 2 appears both in the
Object Language and the Meta-language. Secondly, the
Meta-language must be able to name each proposition
in the Object Language. Here we happen to name it
”1+1=2”, but we could also call it ”Sentence 1” or ”My
First Equation”.

We might notice therefore that (4) is a sentence
written completely in the Meta-language. The sentence
label ”1 + 1 = 2” and 1 + 1 = 2 are both strings of the
meta-alphabet. Taking this further, the phrase ”if and
only if” is a logical connection of the Meta-language.
Indeed, it expresses the same concept as ⇔ in the Object
Language. To make this distinction clear, in this essay
we will use⇒ and⇔ for the Object Language and→ and
↔ for the same concept in the Meta-language. Finally,
we realise ”is true” in a predicate in the Meta-language.45

This leads us to Tarski’s Criterion of Truth. We denote
the name of a sentence, A, is with ⌜A⌝. Then Tarski’s
criterion is defined as follows.

Definition 25. Convention T [18] A one variable
predicate T for the truth of a sentence must satisfy

T(⌜A⌝) ↔ A (7)

for all sentences A.

As a final comment, we reiterate that we can have the
case that the Object Language and the Meta-language
are the same. That is, the language is capable of self-
reference. English, for instance, is a self-referential lan-
guage. We can say things like:

”This is sentence is seven words long” (8)

It may seem counter-intuitive for a language to con-
tain a copy of itself. However, this tension is some-
what resolved by realising the number of formulae in any

45 As a further comment ⊢ and |= are in fact Meta-language symbols
[1]. Hence the string

⊢ ¬(A ∧ ¬A) (5)

is technically in-fact a Meta-language statement. It is staying

¬(A ∧ ¬A) (6)

is derivable from First order Logic. This reminds me of the dis-
tinction in Kantian Philosophy between the ”Noumenon” (”the
[unknowable] thing itself”) and the ”Phenomenon”[19]. It is cu-
rious that this distinction might apply to languages, given the
Object Language isn’t physical.

such formal language is countably infinite [20]. In such
self-referential cases, a predicate satisfying Convention-T
would satisfy

T(⌜A⌝) ⇔ A (9)

As we will see, this leads to paradoxes. But first, we
will briefly discuss Gödel’s encoding

III.b Gödel’s Encoding

A key insight of Gödel is that Peano Arithmetic can
talk about itself. Namely, we are able to assign a unique
number - i.e. a unique name - to every formula in Peano
Arithmetic. In fact, not only can we assign each formula
in Peano Arithmetic a unique number, we can assign a
unique number to finite sequences of formulae and there-
fore to each proof in Peano Arithmetic. I won’t go into
detail here as to how this is done but good explanations
are found here: Ref.[21, 22]. From now on, we will use
⌜⌝ to symbolize this encoding, i.e. in a 1OT extending
PA, ⌜A⌝ is the Gödel number of A.

III.c. Tarski’s Truth Schema, Diagonal Lemma, and
the Undefinability of Truth

We begin investigating these self-referential theories
with an extremely important Lemma:

Lemma 26. The Diagonal Lemma46. Let (L, T ) be
1OT extending PA. For every formula A(x) with one free
variable, there is a formula B such that:

T ⊢ (B ⇔ A(⌜B⌝)) (10)

The Diagonal Lemma leads immediately to Tarski’s
indefinabilty of Truth.

Theorem 27. Tarski’s Theorem on the undefin-
able of Truth Any 1OT extending PA containing a pred-
icate satisfying Convention-T is inconsistent.

Proof. Assume T is consistent and contains a predicate,
T, that satisfies convention-T, i.e.

T(⌜A⌝) ⇔ A (11)

Consider the predicate ¬T. By the Diagonal Lemma, ∃Λ
such that

T ⊢ (Λ ⇔ ¬T(⌜Λ⌝)) (12)

However, T satisfies Convention-T, so we also have

T ⊢ (Λ ⇔ T(⌜Λ⌝)) (13)

46 Also called ”Fixed point lemma” or ”self referential lemma”
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Combining these yields:

T ⊢ (T(⌜Λ⌝) ⇔ ¬T(⌜Λ)⌝) (14)

But of course we also have47

T ⊢ ¬(T(⌜Λ⌝) ⇔ ¬T(⌜Λ)⌝) (15)

thus we derive a contradiction. Thus T is not consistent.

Note in the above Λ takes the role of:

”This sentence isn’t true” (16)

This referred to as ’The Liar’[23]. Thus (T(⌜Λ⌝) ⇔
¬T(⌜Λ)⌝) expresses:

The Liar is True if and only if The Liar is False (17)

Tarski’s Theorem shows that, in First Order Arith-
metic and its extensions, there cannot be a satisfactory48

definition of truth [23].

III.d. A proof sketch of Gödel’s First
Incompleteness Theorem

We’re now in a position to give a sketch of Gödel’s
First Incompleteness Theorem. Firstly, Gödel’s encod-
ing allows us to encode both formulae and proofs in arith-
metic. In particular, we can construct a 2-input predicate
Proof(⌜A⌝, ⌜B⌝) (read ”A is the a proof of the formula
B”) with the property49[14].

T ⊢ A ↔ T ⊢ ∃ ⌜B⌝ Proof(⌜B⌝, ⌜A⌝) (18)

We define

Prov(⌜A⌝) ↔df ∃ ⌜B⌝ Proof(⌜B⌝, ⌜A⌝) (19)

We can now prove Gödel First Incompleteness Theo-
rem:

Theorem 28. Gödel’s First Incompleteness Theo-
rem: Any consistent 1OT extending PA is incomplete.

Proof. (sketch [8, 23]) Assume T is consistent and Com-
plete. As it is consistent and complete, by Eq.18 we have:

T ⊢ (Prov(⌜A⌝) ⇔ A) (20)

That is Prov(⌜A⌝) satisfies Convention T. Thus by
Tarski’s Theorem, T is inconsistent.

47 Check Truth table of ¬(A ↔ ¬A) and then apply Gödel Kom-
pleteness

48 According to Tarski
49 Note, proving this property is non-trivial

In the context of Gödel’s Theorem, the fixed point of
Tarski’s Theorem (Λ) is known as ”the Gödel Sentence
of T”, GT . For this sentence, we have

T ⊢ (GT ⇔ ¬Prov(⌜GT ⌝) (21)

Thus Gödel’s Theorem can be stated succinctly: For
any consistent 1OT extending PA, there is a Gödel sen-
tence GF such that

T ̸⊢ GT and T ̸⊢ ¬GT (22)

As explained in Section IV, GF is true in the standard
model of Arithmetic.

PART IV LEFT OVER FAQ REGARDING
GÖDEL’S FIRST INCOMPLETENESS THEOREM

Pretty reasonably, one might have many left over ques-
tions about Gödel’s First incompleteness Theorem. In
this section, I aim to quickly answer a few that came to
my mind.

Can you give me an example of an unprovable true
sentence about the Natural Numbers ?

So the Gödel sentence is a true unprovable sentence
about the Natural Numbers. However, it is pretty
artificially constructed. It is reasonable to ask: are there
any important theorems which are unprovable? The
answer is yes!

For example, there is the strengthened finite Ramsey
theorem about colouring subsets of the Natural Numbers.
This theorem is true for the Natural Numbers. However,
the Paris-Harrington Theorem states this theorem is un-
provable from Peano Arithmetic [24, 25]. There is also a
very nice discussion about this in Ref.[17]

How do you prove such a sentence is True - or
indeed unprovable?

Well ok, but how do you prove the strengthened finite
Ramsey Theorem is true then? It turns out this was
done from ZFC set theory [26]. ZFC set theory is an-
other first order theory, which can be used to construct
models of Peano Arithmetic (see later). However, it can
also express considerably more than Peano Arithmetic
and as such can be used to prove statements.

Of course being another first order theory which
extends Peano Arithmetic, ZFC has its own Gödel
sentences. There is no escape from Gödel.



11

One might also be curious how one proves that the
strengthened finite Ramsey theorem is unprovable. The
idea here was to show that if it were provable, Peano
Arithmetic could demonstrate its own consistency -
which we will see in the next section, it cannot.

Non-Standard Models

The fact that theories like the Gödel Sentence and the
strengthened Ramsey Theorem are unprovable means -
via Gödel’s Kompleteness Theorem - there are models of
Peano arithmetic in which these theories are false. These
are referred to as ”Non-Standard Models”. In fact, the
sheer range of non-standard models of PA is mind bog-
gling. For instance, the Löwenheim-Skolem Theorem [27]
tells us there is a model of PA for every infinite cardinal-
ity. That is there is a non-standard model of the Natural
Numbers with cardinality of the Reals!

”What are ... the Numbers?”[28]

By this point, you may have started to lose your
grasp on what a number is. After all, way back in
Part I, I simply introduced the standard model of
arithmetic on the Natural Numbers as ”N = {1, 2, 3, ...}
with 1 + 1 = 2, 1 × 2 = 2 etc”. But what exactly is
this standard model? How do we know its a model of PA?

To answer this, I would first recommend the excellent
series of blog posts: Ref. [16, 29, 30]. They discuss
how one can come to define the standard model of the
Natural Numbers through Peano Axioms.

Peano Axioms are not the same as Peano Arithmetic.
Peano Arithmetic is a first order theory, whereas Peano’s
Axioms include the axiom of induction

∀P (P (0) ∧ ∀k(P (k) ⇒ P (k + 1)) ⇒ ∀nP (n)) (23)

i.e. for any 1-input predicate, if P(0) is true and P(k)
implies P(k+1) is true, then we can conclude P(n) is
true for all. This axiom belongs to Second Order
Logic. In First Order Logic, we can only quantify over
variables; we can write ∀x but not ∀P . Second Order
Logic allows us to quantify over predicates too, i.e. we
can write ∀P (”For all Properties...”).

Remarkably, Dedekind proved that any two models
of Peano’s Axioms are isomorphic [28]. Thus Peano
Axioms really do pinpoint arithmetic on the Natural
Numbers.

For this reason, an alternate definition of the standard
model comes from ZFC set theory. The rough idea here is

that 0 is identified with the empty set, ∅. The successor
of t is then defined as s(t) = t ∪ {t} . Thus we have:

0 ↔df ∅ (24)

1 ↔df S(0) = ∅ ∪ {∅} = {∅} = {0} (25)

2 ↔df S(1) = {∅} ∪ {{∅}} = {∅, {∅}} = {0, 1} (26)

...

It is through this model, one can prove statements like
the strengthened finite Ramsey theorem for the Natural
Numbers. For further discussion see Ref, [31]

One Logic to Rule them all

It might occur to you - well if Peano Axioms uniquely
specify Arithmetic on the Natural Numbers, why don’t
we just use Second Order Logic instead of First Order?
One problem is that Second Order Logic has not been
demonstrated to be Komplete. However, this is all I will
have to say on Second Order Logic. For a further discus-
sion see Ref.[9, 32, 33]

Is all of Maths incomplete?

Ok ok, coming back to First Order Logic, so Peano
Arithmetic and its extensions are incomplete. Does
that mean all first order maths is incomplete? No! For
example, it can be demonstrated that certain axioma-
tization of Euclidean Geometry [34] are consistent and
complete.50

Closer to Peano Arithmetic, another complete theory
is Presburger Addition [35] - a theory with the model
of addition on the Natural Numbers (but no multipli-
cation). Before you think multiplication is somehow
unique important to self-reference, there is also complete
theories with multiplication and no addition[36]51.

As a final delightfully strange note, it turns out the
theory of real numbers - the First Order Theory of Real
Closed Fields - is also complete. [38]52

50 I find this very beautiful as Euclidean Geometry was in some
sense the beginning of mathematicians attempts to axiomatize
mathematics. It’s also where I started being interested in the
consistency of axioms

51 See Ref.[37] for a good discussion.
52 See Ref.[39] for discussion
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IV GÖDEL’S SECOND INCOMPLETENESS
THEOREM

In this final section, we now turn our attention to
Gödel’s Second Incompleteness Theorem. In Gödel’s
First Incompleteness theorem, we saw there are Gödel
statements, which can neither be proven nor disproven;
namely:

T is consistent → T ̸⊢ GT (27)

where GT is the Gödel statement following from the Di-
agonal Lemma that satisfies:

T ⊢ (GT ⇔ ¬Prov(⌜GT ⌝) (28)

and Prov(⌜A⌝) states there is a proof of A in the theory.

Gödel’s Second Incompleteness Theorem give a very
dramatic example of another such a statement. Specif-
ically, consider a statement Cons(T) that encodes the
statement ”T is consistent”. Specifically, we choose ⊥
to symbolize an inconsistent statement (typically ⊥ ↔df

0 = 153[14]). We then define:

Cons(T ) ↔df ¬Prov(⌜⊥⌝) (29)

Theorem 29. Gödel’s Second Incompleteness
Theorem [14, 15] Let (L, T ) be a 1OT extending PA.
If (L, T ) is consistent, then

T ̸⊢ Cons(T ) (30)

Colloquially, ”Complicated enough, consistent First
Order Theories cannot prove their own consistency”.

Proof. (sketch [14]) The idea of the proof is that we first
formalise Eq.27 within T, i.e.

Cons(T ) ⇒ ¬Prov(⌜GT ⌝) (31)

Remarkably, this formula does indeed hold. Namely:

⊢ (Cons(T ) ⇒ ¬Prov(⌜GT ⌝)) (32)

Thus from the definition of the Gödel statement:

T ⊢ Cons(T ) ⇒ GT (33)

Therefore if T ⊢ Cons(T ), then by (⇒ e) T ⊢ GT

which contradicts Gödel’s First Incompleteness Theorem.
Hence T ̸⊢ Cons(T )

53 This contradicts axiom 4 of PA

Semantic Second Incompleteness Theorem

As before, we can express a semantic version.

Theorem 30. Gödel’s Second Incompleteness
Theorem [Semantic] Let (L, T ) be a 1OT extending
PA. If T is consistent (equivalently, if T has a model
[Thm. 22]) then

1. T ̸|= Cons(T ) (by Gödel Kompleteness)

2. (equivalently) There exists a ”non-standard” model
of T, M2, such that |=M2

¬Cons(T ) = Prov(⌜⊥⌝)

This was hard for me to get my head around54.
Taking the example of Peano Arithmetic again. PA has
a model and is therefore consistent. But this means
there are non-standard models in which Prov(⌜⊥⌝)
is true55. However, by the axioms, T ⊢ ¬⊥, and
therefore by consistency T ̸⊢ ⊥56. Therefore, for me,
this means Cons(T ) is not doing what it says it is.
Perhaps an important observation is that Cons(T ) is
just one encoding of consistency. We could have chosen
a different ⊥. I guess one way to look at it is no encoding
of consistency is enough to guarantee consistency. I will
leave this here in the hope someone can explain it to me57

Moving on, again we might think we could solve this
problem by adding Cons(T) to our axioms, and thereby
tautologically restrict ourselves to consistent models?
Nope! Once again Gödel’s Second Incompleteness
theorem also applies to this new theory, and so on.

Well, can we be sure at least the standard model
- Peano’s Axioms - is consistent? The good news is,
yes! We can prove the standard model is consistent
from ZFC...but the bad news is ZFC is a first order
theory extending PA, so it itself cannot prove its own
consistency!

To finish, we ask one more question. Is there any
theory which can prove its own consistency. Remark-
ably, Yes! These are curious theories that are expressive
enough to be able to self-reference, yet not enough for
the diagonal lemma to apply [42].

V CONCLUDING REMARKS

This essay turned out to be a lot more than I ex-
pected. We began with an attempt at a very quick

54 and I’m not 100% sure I have
55 For support of this understanding, see Ref. [40]
56 Alternatively we must have ̸|= ⊥ ↔df 1 = 0 and therefore by

Gödel Kompleteness ⊢ ⊥
57 See Ref[40, 41] for further discussion
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introduction to Classical Logic. This allowed us to
understand Gödel’s Kompleteness theorem58: ⊢ ↔ |=. I
don’t think the power of Gödel’s Kompleteness theorem
can be overstated. For me, it is the lynch-pin for my
understanding of Gödel’s other statements.

Next we dived into Gödel’s First Incompleteness
theorem - that there are unprovable statements in
PA and its extension- and saw its connection to the
Liar Paradox through Tarski’s Undefinability of Truth.
Finally, we discussed one such unprovable statement in
the form of Gödel’s Second Incompleteness theorem -
that PA is consistent.

I would like to finish by simply listing some questions
I find interesting:

1. When approaching Classical Logic, I started with
a belief that formal logic would constitute a foun-
dation from which to build more complex ideas.
However, we find that we get words like ’set’ and
’function’ appearing very early in our text. As we
saw, this is a feature of the fact the Meta-language
should be able to say everything the Object Lan-
guage can say (it includes the semantics of the Ob-
ject Language). This has a circular feel to it. A
way out of this is to remove the assumption that
formal logic is more foundational and instead re-
alise the point of a Formal Language is to remove
any ambiguity. Indeed, formal systems go so far
as to completely remove meaning and reduce logic
to generation and manipulation of strings. From
the well defined formulae, we can then put back
on meaning in a completely unambiguous way and
justify our rules of inference by their preservation
of truth (as understood in the Meta-language)59.

2. The rules of inference treat logic as mechanical
computation. To this observation, I have three
comments

(a) This perspective reminds me of John Searle’s
”Chinese Room” thought experiment in the
field of AI and human consciousness [43]. The
thought experiment is as follows: Say scien-
tists have produced a program that speaks
Chinese so well it can pass the Turing test
(in Chinese). Then put a person who cannot
speak Chinese in a closed room and feed pieces
of paper with sentences in Chinese through
a slit in the door. The non-Chinese-speaking
person then manually implements all the steps

58 with Soundness
59 For further discussion see Ref. [? ? ]

of the algorithm and feeds the output back
through the door. The question is: does that
mean the person now understands Chinese?
After all, they will pass the Chinese Turing
Test... In our context, what do the rules of
logic have to do with understanding truths?
Logic seems to be how we verify knowledge
but not necessarily how we create it.

(b) If logic is mechanical, what is provable is con-
strained by the laws of physics. As expressed
by David Deutsch [44]: ”Though the truths of
logic and pure mathematics are objective and
independent of any contingent facts or laws
of nature, our knowledge of these truths de-
pends entirely on our knowledge of the laws
of physics”

(c) In fact, if rules of inference are just computa-
tion, why should that computation be classi-
cal? Could we construct a quantum rules of
inference. Moreover, why shouldn’t semantics
be quantised? (see for instance Ref. [44])

3. The semantics of Classical Logic asserts that for-
mulae (in an interpretation given a value assign-
ment) are either True or False. However, we know
natural language has paradoxical sentences, such as
The Liar, which can be shown to be both True and
False. Should we then develop a semantic system
which allows such contradictions? As advocated by
Priest [45]: ”Suppose we stop banging our heads
against a brick wall trying to find a solution, and
accept the paradoxes as brute facts. That is, some
sentences are true (and true only), some false (and
false only”, and some both true and false”. Note,
that if we take this approach, in order to avoid
triviality, such a system must avoid the principle of
Explosion (see E.g. 13) - that is to say it must be
a para-consistent Logic [46]. What would be the
implications of a mathematics founded on such a
logic?
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[15] K. Gödel, Monatshefte für Mathematik Physik , 173–198

(1931).
[16] “Godel’s Completeness and Incompleteness The-

orems - LessWrong — lesswrong.com,” https:

//www.lesswrong.com/posts/GZjGtd35vhCnzSQKy/

godel-s-completeness-and-incompleteness-theorems

(), [Accessed 14-Aug-2022].
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