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Skolem’s paradox [1] is the seeming contradiction between the fact that on
the one hand, ZFC set theory proves the existence of uncountable sets while
on the other hand, according to the Löwenheim-Skolem theorem, there exist
countable models of ZFC. A model of ZFC, M, consists of a set M and a
binary relation ∈M on M such that all theorems of ZFC hold when interpreted
in M, where interpreting a term of ZFC in M amounts to replacing ∈ with ∈M

and restricting all quantifications ∀,∃ to M instead of quantifying over all sets.
Skolem’s paradox now follows from the existence of transitive, countable

models of ZFC. In such models, first, ∈M agrees with ∈ and second, M and
all its elements are countable sets [2], i.e. can be enumerated by the natural
numbers. As, however, M realizes all theorems of ZFC, in particular, it realizes
the theorem ”there exist uncountable sets”. Thus, there exist sets in M that
are countable, when seen from outside of M but uncountable, when seen from
inside of M.

Although seemingly a contradiction, Skolem’s paradox does not reveal math-
ematical flaws of set theory, it rather highlights limitations of our naive reasoning
about it. While the existence of uncountable sets can be derived from the ZFC
axioms and thus holds in every model, i.e. can be seen as absolute, other notions
such as the specific cardinality of sets are not absolute. Claiming that a certain
set has a certain cardinality only makes sense relative to a given model. In this
text, I will argue in more depth, how, in this light, we can make sense out of
Skolem’s paradox.

1 ZFC as a first-order theory

In order to fully understand Skolem’s paradox, one first needs to understand
ZFC as a first-order theory. In particular, it is important to note that, in this
context, ZFC is purely syntactical. Writing a ∈ A, we do not need to interpret
this as ”a is an element of A”, nor do we need to interpret a and A as sets. At
this point a and A are simply variables and a ∈ A is a well-formed term of ZFC.

Definition 1. The language of ZFC, LZFC consists of variables A, a,B, b, ...,
logical connectives ∧,∨,¬, =⇒ , ⇐⇒ , ..., quantifiers ∀,∃ and two binary pred-
icates =,∈.

This means that any well-formed1 string of these symbols is a valid formula

1Well-formed according to the usual rules of these symbols.
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in ZFC. A formula is called a sentence if it contains no free variables, i.e. all
variables are bound by quantifiers.

A theory consists of a language L together with a collection of sentences of
L, called axioms. ZFC is defined by the following axioms.

Definition 2 (ZFC). ZFC is the theory over LZFC that is defined by the well
known axioms (see for instance [3]).

For this text, it is less important how these axioms precisely look like. It is
however important that each axiom of ZFC simply is a sentence of LZFC.

In order to work with ZFC, we additionally have to prescribe a mechanism
of how we can derive new sentences from these axioms, i.e. of how we can prove
theorems.

Definition 3 (see [4]). Let ϕ be a sentence in LZFC. A proof of ϕ in ZFC is a
sequence of formulas of ZFC ψ1, ..., ψn such that

1. the first formula ψ1 is an axiom of ZFC

2. the last formula ψn equals ϕ

3. ψi is either an axiom or follows from ψ1, ..., ψi−1 by logical inference rules
(modus ponens, ...)2

If there exists a proof for ϕ in ZFC we write ZFC ⊢ ϕ and say ZFC proves ϕ or
ϕ is a theorem in ZFC.

Note that at this point, everything is still purely syntactical. There is no
need to interpret meaning into axioms of ZFC. At this point, ZFC, together with
the proof system of choice, simply is a formal language with a distinguished col-
lection of sentences (the axioms) and a mechanism of constructing new sentences
from the axioms (the theorems).

2 Models of ZFC

In contrast to the purely syntactical treatment in the previous section, in math-
ematical practice, writing a ∈ A we do interpret a and A as sets and a ∈ A
as ”a is an element of A”. More precisely, usually we do not think of ZFC
as a first-order theory but rather think of a model of ZFC, i.e. we imagine a
mathematical universe of sets M that is equipped with a binary element re-
lation ∈. This point of view is made precise in the context of model theory.
In particular, in model theory, there is a clear distinction between the purely
syntactical, axiomatic system and models of this system. Roughly speaking, a
model of an axiomatic system is a collection of sets and relations between these
sets such that all axioms are satisfied when mapping variables A, a, ... to sets
and predicates ∈, ... to relations. Before making this precise, we have to define
the weaker notion of a structure for a formal system.

2More abstractly, several choices of these inference rules are possible. To specify a proof
system one needs to specify the allowed inference rules.
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Definition 4 (see [4]). An LZFC-structure M consists of a set M and a binary
relation ∈M onM such that for each variable a of LZFC there is a corresponding
element aM of M.

We call M the domain or universe of M and ∈M its element relation. Note
that an LZFC-structure gives meaning to ZFC, within M variables a, b, c, ... now
correspond to actual set aM, bM, cM, ... and ∈M is an actual relation among
those sets, not just a predicate symbol. Let ϕ be a sentence of ZFC. We can
inductively define M |= ϕ [4]. Roughly speaking, M |= ϕ if ϕ evaluates to true
when

1. replacing all occurrences of ∈ in ϕ with ∈M

2. replacing all occurrences of variables a, b, c, ... in ϕ with their corresponding
sets aM, bM, cM

3. replacing all quantifications ∀a,∃b, ... with ∀a ∈M,∃b ∈M, ...

We read M |= ϕ as M satisfies ϕ or ϕ is true in M.

Definition 5. An LZFC-structure M is a model for ZFC if for every axiom of
ZFC ϕ, M |= ϕ.

Note that there might exist multiple models of ZFC that differ in their
universes as well as in their element relation. In particular, given a sentence ϕ
of ZFC, there might exist models that satisfy ϕ and such that do not satisfy ϕ.
If a sentence ϕ is satisfied in every model of ZFC we write ZFC |= ϕ. Gödel’s
completeness theorem states that this is the case if and only if ϕ is a theorem
of ZFC, i.e.

ZFC |= ϕ if and only if ZFC ⊢ ϕ (1)

The situation hence is the following: ZFC is a purely syntactical first-order
theory that together with a proof systems allows us to derive theorems. In
practice, we mainly study3 models of ZFC. These models allow us to talk about
actual sets and relations between them. Moreover, within each model, certain
statements about sets will be true. Precisely those statements that are theorems
of ZFC are true in every model. Conversely, if a statement is true in one model
but its negation is true in some other model, this statement is independent of
ZFC, i.e. neither the statement, nor its negation is a theorem in ZFC.

Now coming back to the introduction of this section, when we think of ZFC
we think of a specific model U of it. This model is special as on the one hand,
its universe U should contain all sets4 that can be constructed from ZFC while
on the other hand its element relation ∈U should agree with the usual ∈ of
ZFC. Note that, while ∈ is a binary predicate, i.e. can be understood as purely
syntactical symbol, ∈U is an actual relation on U , i.e. can be understood as
a subset of U2. Agreement of ∈U with ∈ should hence be understood in the
sense that a ∈ b can be proven from ZFC if and only if a ∈U b according to

3or think of
4Or at least all sets of interest.
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U . One possible such model is obtained by taking U to be the von Neumann
universe [5]. The construction of the van Neumann universe is similar to the
construction of ordinal numbers in [6]. The problem, however, is that that U
is not a set itself but a proper class. One can nevertheless interpret U as the
set-theoretic universe, by relaxing the notion of a model of ZFC to allow for
class-models instead of set-models. Now the crucial point is that whenever we
make statements about properties of certain sets it usually is understood w.r.t.
this model U . In particular, certain statements might hold in this model but
fail to hold in other models of ZFC5. Such statements are then not absolute, in
the sense that they can be proven from the axioms of ZFC but relative to the
model that we chose to work with.

An interesting class of models of ZFC can be obtained by restricting the set
theoretic universe U to a subclass of it that is small enough to form a set. On
this restricted universe one then uses the restricted version of ∈U as element
relation.

Definition 6 (see [7]). A model M is called standard if its element relation
∈M is the restriction of ∈U to M , i.e. if its element relation agrees with ∈.
M is called transitive if it is standard and M is a transitive set, that is every
element of M is also a subset of M6.

Note that standard model of ZFC, still have an element relation that agrees
with ∈7. They, however, have a restricted universe, that only is a subset of the
proper class U that contains all sets and quantification is understood w.r.t. this
restricted universe.

Note further that ZFC does not prove the existence of transitive models of
ZFC. It does not even prove the existence of models of it in general, as if a theory
has a model it is consistent [4] and Gödel’s incompleteness theorems states that
ZFC cannot prove its own consistency. For the following, we will nevertheless
assume the existence of a transitive model of ZFC. This transitive model sets the
stage for Skolem’s paradox, as we can apply the transitive submodel theorem,
a stronger version of the downward Löwenheim-Skolem theorem, to it.

Theorem 1 (see [8]). If ZFC has a transitive model, then it has a transitive
model with countable universe.

3 Skolem’s paradox

We are now in a position where we can discuss Skolem’s paradox on a formal
level. Assuming the existence of a transitive model of ZFC, according to the
transitive submodel theorem, there exists a transitive model M with countable
universe M . Note that stating that M is countable has to be understood w.r.t.

5And this isprecisely what happens in Skolem’s paradox.
6For instance {∅, {∅}} is transitive. Moreover every ordinal number is transitive and even

every element of an ordinal number is transitive.
7People often state that standard models of ZFC use the ”real” element relation.
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U . More precisely, M and N are contained8 in U and ”M is countable” means
that in U there exists a injective function from M to N, i.e. an enumeration
of M . This, in particular, implies that every element of M is countable: As
M is transitive, every element m of it is also a subset of it. Restricting the
enumeration to m (as a subset of M) hence provides an enumeration of m (as
an element).

Next, recall that as M is a model of ZFC, it satisfies at least those sentences
that can be proven in ZFC, i.e. if ZFC ⊢ ϕ then M |= ϕ. In particular, the
existence of the set of natural numbers can be proven from ZFC. More precisely,
there exists a formula in LZFC, ϕ(N) with one free variable, N , that states ”N
are the natural numbers” and ∃!N : ϕ(N) is a theorem of ZFC [9].

Moreover, Cantor’s theorem, ”no set has the same cardinality as its pow-
erset”, is also a theorem of ZFC. Given a set S, the existence of its powerset
follows from an axiom of ZFC. Thus, it follows that for each set S there ex-
ists a set P (one choice for P is P(S)) with strictly bigger cardinality, or more
formally, the following is a theorem in ZFC

∀S : ∃P : ∀f : ”f is a function from S to P” =⇒ ”f is not surjective” (2)

Combining this with the theorem that guarantees the existence of the set of
natural numbers, we get the following new theorem in ZFC:

ψ := ∃!N : ∃P : ϕ(N)

∧ (∀f : ”f is a function from N to P” =⇒ ”f is not surjective)” (3)

In words, this states that ZFC proves the existence of the set of natural numbers
together with a set P that cannot be enumerated by these natural numbers, i.e.
that is uncountable w.r.t. these natural numbers. Now this theorem is satisfied
by M, i.e. M |= ψ.

As M is a standard model of ZFC, interpreting ψ w.r.t. M amounts to
replacing all unrestricted quantifications ∀a,∃b, ... with restricted quantifications
∀a ∈ M,∃b ∈ M, .... Thus, in words, the formula that we arrive at states the
following: ”In M there exists a set of natural numbers N and a set P such
that in M there exists no enumeration of P by elements of N . This is Skolem’s
paradox.

Definition 7 (Skolem’s paradox). Assume the existence of a transitive model
of ZFC, then there exists a transitive model M such that

1. M and all its elements are countable sets (w.r.t. the ambient model U),

2. in M there exists a set P that w.r.t. M (and w.r.t. the natural numbers
in M) is uncountable.

If one assumes that a given set is either countable or uncountable in an
absolute way, this is clearly a paradox. How can P be countable, when seen

8Here N refers to the usual, set-theoretic construction of the natural numbers.
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from the outside of M, i.e. w.r.t. U but uncountable when seen from the inside
of M. Interpreting Skolem’s paradox from a more technical, model theoretic
point of view it is however not so surprising. Clearly, there exist statements
that depend on the model that one uses to interpret them, i.e. that are relative
to the model and not absolute. This is the very idea that allows one to prove
independence of a certain sentence from a given axiomatic system in a model
theoretic way, by constructing both a model that satisfies that sentence and a
model that satisfies its negation. From this point of view, Skolem’s paradox
simply reveals that a set cannot be uncountable in an absolute way but only
relative to a given model.

Moreover, from this model theoretic point of view it is even clear how P
can be countable w.r.t. U but uncountable w.r.t. M. To that end, note that
it can be shown that the set of natural numbers, characterized as the unique
set N that satisfies ϕ(N) is the same in all transitive models of ZFC[10]. This
means that, restricting ourselves to transitive models, we can safely talk about
the set of natural numbers N. Next, recall that M and U , when restricted to
sets contained in M have the same element relation. Hence, the only difference
that occurs when interpreting formulas w.r.t. M instead of U is that quantifiers
are bounded to M . Stating that P is countable w.r.t. U thus means that in U
there exists an enumeration of P by elements of N, i.e. an injective function9

from N to P . Stating that P is countable w.r.t. M then means that there exists
such an enumeration in M . Hence, if the enumeration that witnesses that P is
countable is an element of U but not an element M , P is countable w.r.t. U but
uncountable w.r.t. M , which perfectly explains Skolem’s paradox.

In total, from a model theoretic point of view Skolem’s paradox does not
seem so paradoxical anymore. It rather shows us that certain properties of sets,
that we naively interpret in an absolute way are actually relative to the model
in which we interpret them.
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